Light induces c-fos and per1 expression in the suprachiasmatic nucleus of arrhythmic hamsters.

نویسندگان

  • Monique T Barakat
  • Bruce F O'Hara
  • Vinh H Cao
  • H Craig Heller
  • Norman F Ruby
چکیده

Locomotor activity rhythms in a significant proportion of Siberian hamsters (Phodopus sungorus sungorus) become arrhythmic after the light-dark (LD) cycle is phase-delayed by 5 h. Arrhythmia is apparent within a few days and persists indefinitely despite the presence of the photocycle. The failure of arrhythmic hamsters to regain rhythms while housed in the LD cycle, as well as the lack of any masking of activity, suggested that the circadian system of these animals had become insensitive to light. We tested this hypothesis by examining light-induced gene expression in the suprachiasmatic nucleus (SCN). Several weeks after the phase delay, arrhythmic and re-entrained hamsters were housed in constant darkness (DD) for 24 h and administered a 30-min light pulse 2 h after predicted dark onset because light induces c-fos and per1 genes at this time in entrained animals. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization and probed with c-fos and per1 mRNA probes made from Siberian hamster cDNA. Contrary to our prediction, light pulses induced robust expression of both c-fos and per1 in all re-entrained and arrhythmic hamsters. A separate group of animals held in DD for 10 days after the light pulse remained arrhythmic. Thus, even though the SCN of these animals responded to light, neither the LD cycle nor DD restored rhythms, as it does in other species made arrhythmic by constant light (LL). These results suggest that different mechanisms underlie arrhythmicity induced by LL or by a phase delay of the LD cycle. Whereas LL induces arrhythmicity by desynchronizing SCN neurons, phase delay-induced arrhythmicity may be due to a loss of circadian rhythms at the level of individual SCN neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute light exposure suppresses circadian rhythms in clock gene expression.

Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We th...

متن کامل

Reorganization of suprachiasmatic nucleus networks under 24-h LDLD conditions.

The suprachiasmatic nucleus (SCN), locus of the master circadian clock in the brain, is comprised of multioscillator neural networks that are highly plastic in responding to environmental lighting conditions. Under a 24-h light:dark:light:dark (LDLD) cycle, hamsters bifurcate their circadian locomotor activity such that wheel running occurs in each of the 2 daily dark periods with complete inac...

متن کامل

Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward.

The clock gene protein Per 1 (PER1) is expressed in several brain structures and oscillates associated with the suprachiasmatic nucleus (SCN). Restricted feeding schedules (RFS) induce anticipatory activity and impose daily oscillations of c-Fos and clock proteins in brain structures. Daily access to a palatable treat (chocolate) also elicits anticipatory activity and induces c-Fos expression m...

متن کامل

Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels.

Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, se...

متن کامل

The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus.

Non-photic stimuli, such as diurnal wheel running in rodents, phase shift the circadian clock and suppress the expression of Per1 in the suprachiasmatic nucleus (SCN). The goal of the present study was to directly decrease Per1 expression using antisense (AS) oligodeoxynucleotides to determine if such suppression produced non-photic phase shifts. Injections of Per1-AS suppressed expression of P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 289 5  شماره 

صفحات  -

تاریخ انتشار 2005